
Eur. Phys. J. D 42, 501–509 (2007)
DOI: 10.1140/epjd/e2007-00133-6 THE EUROPEAN

PHYSICAL JOURNAL D

Bell inequalities for a sensible family of local hidden variable
theories testable at low detection efficiency

E. Santosa

Departamento de F́ısica, Universidad de Cantabria, 39005 Santander, Spain

Received 27 December 2006 / Received in final form 7 March 2007
Published online 23 March 2007 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2007

Abstract. A family of local models containing two angles as hidden variables is defined for experiments
measuring polarization correlation of optical photons. Searching for the best model of the family, that is
giving predictions most close to quantum mechanics, allows deriving Bell-type inequalities which may be
tested with relatively low detection efficiency.

PACS. 03.65.Ud Entanglement and quantum nonlocality (e.g. EPR paradox, Bell’s inequalities, GHZ
states, etc.) – 42.50.Ar Photon statistics and coherence theory

1 Introduction

More than forty years have elapsed since John Bell [1] pro-
posed his celebrated inequalities. These inequalities, which
involve measurable quantities, provide necessary condi-
tions for local realism and, in some experiments with ideal
set-ups, contradict the predictions of quantum mechanics.
Many empirical tests have been performed of local real-
ism against quantum mechanics, via the Bell inequalities,
but no experiment has been conclusive. In fact although
the results have generally agreed with the predictions of
quantum mechanics, no experiment has given results in-
compatible with local realism, as is shown by the exis-
tence of local realistic models for all of them [2]. The in-
ability to perform a true empirical test of local realism
is commonly disguised with the claim that it has already
been refuted by the experiments, modulo some irrelevant
loopholes. But I think that the extreme difficulty to make
a loophole-free test, proved by the unsuccessful effort of
forty years, does not support the common wisdom that
the question of local realism is settled. On the contrary
the conclusion is that further research is needed.

Locality should be understood in the relativistic sense,
that is impossibility of superluminal communication. Thus
testing locality requieres measurements made in regions
spatially separated, in the sense of relativity theory. As a
consequence the tests are extremely difficult with massive
particles [3] and reliable experiments must be performed
with photons. On the other hand, tests with high energy
photons are not possible due to the lack of efficient polar-
ization analyzers. These difficulties have caused that most
of the experimental tests have been performed with opti-
cal photons, where good polarization analyzers exist and
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locality may be insured. However these experiments suf-
fer from a detection loophole, due to the fact that a good
overall detection efficiency has not yet been achieved. In
fact, it is well-known that efficiencies as high as 80% are
required for loophole-free tests of local realism. Detectors
with high quantum efficiency already exist, but there are
other difficulties reducing the overall efficiency to about
30% or less in practice.

It is common to formulate the question of local realism
in terms of local hidden-variables (LHV) theories. That
is, an experiment refutes local realism if there is no LHV
model compatible with their results. Bell inequalities are
necessary conditions for LHV theories but, as said above,
they are extremely difficult to test. The experimental dif-
ficulties with generalized Bell inequalities involving more
than two particles [4] are not smaller. As a consequence
there is a long history of defining restricted families of
LHV theories whence easily testable inequalities may be
derived. Usually the restrictions are introduced in the form
of auxiliary assumptions, in addition to local realism. In
the first few experiments with optical photons, performed
around 1970, the auxiliary hypothesis introduced was “no
enhancement”, later discussed by Clauser and Horne [5].
Similar assumptions have been used in all other exper-
iments performed till now so that violations of the in-
equalities do not refute local realism but restricted fami-
lies of LHV theories, namely those fulfilling the auxiliary
assumptions. In my opinion the families of local hidden
variables theories so far refuted by the experiments are
rather unplausible [2]. This is the case, in particular, for
those fulfilling the fashionable “fair sampling hypothesis”.
This is the assumption that the photons actually detected
are representative of the whole set of photons emitted.
But the role of hidden variables is precisely to distinguish,
from each other, several physical systems in the same pure
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quantum state, that is systems which are identical accord-
ing to the standard interpretation of quantum mechanics.
Thus in any LHV model of an experiment it is natural to
assume that the photons detected and those not detected
correspond to different values of the hidden variables and
consequently the sample of detected photons is not repre-
sentative of the whole set. In conclusion, the fair sampling
assumption amounts at dismissing all sensible hidden vari-
ables theories from the start.

In the present paper I study a new family of LHV mod-
els which is rather natural, in my opinion, and it allows
the derivation of inequalities able to discriminate between
the said family and quantum mechanics. The inequalities
are easily testable in optical experiments, in particular the
tests would require only moderate detection efficiencies,
of the order of 30%. The said family was already con-
sidered in a previous publication [6], where an inequality
fulfilled by some sub-family was proposed. That inequality
has been tested empirically with the result that it was ful-
filled and the quantum predictions contradicted although,
according to the authors of the experiment [7], the contra-
diction cannot be considered a violation of quantum me-
chanics. In the present paper I propose inequalities which
should hold true for all members of the said LHV family,
but are contradicted by the quantum predictions in some
cases.

2 A natural family of local hidden variables
models

For the sake of clarity I shall consider experiments mea-
suring the polarization correlation of optical photon pairs,
although the generalization to other cases is possible. The
set-up consists of a source of photon pairs each member of
the pair travelling in a different direction, crossing a lens
system, a polarization analyzer and arriving at a detector.
If the polarization planes of the analyzers are determined
by the angles φ1 and φ2, respectively, the results of the ex-
periment may be summarized in two single rates, R1(φ1)
and R2(φ2), and a coincidence rate R12(φ1, φ2). (In recent
experiments four coincidence rates, rather than two, are
measured because two-channel polarizers are used, a sit-
uation which will be considered below.) In a polarization
correlation experiment the detection rates should be ob-
tained from appropriately defined probabilities p1, p2 and
p12, that is

Rj(φj) = R0pj(φj), j = 1, 2,

R12(φ1, φ2) = R0p12(φ1, φ2), (1)

where R0 is the production rate of photon pairs in the
source, a quantity not measurable in standard experi-
ments. (Here it is assumed that all photocounts come from
photons produced in pairs in the source. In practice there
may be counts of a different origin, e.g. dark counts in
each detector, but they will be neglected for the moment,
see Sect. 4 below.) Following Bell a LHV model consists of
three functions, f(λ), Q1(λ, φ1), Q2(λ, φ2), where λ stands

for one or several hidden variables, such that the detection
probabilities could be obtained by means of the integrals

pj(φj) =
∫
f(λ)Qj(λ, φj)dλ,

p12(φ1, φ2) =
∫
f(λ)Q1(λ, φ1)Q2(λ, φ2)dλ. (2)

The essential requirements of realism and locality imply
that the said functions fulfil the conditions

f(λ) ≥ 0,
∫
f(λ)dλ = 1, 0 ≤ Qj(λ, φj) ≤ 1. (3)

A natural, but relatively simple, family of local hidden
variables model is obtained if we assume that the set λ
of hidden variables may be written λ ≡ {χ1, µ1, χ2, µ2},
where χ1 and µ1 (χ2 and µ2) are variables of the first
(second) photon of a pair and χj is a polarization angle,
so that χj and χj + π represent the same polarization.
Actually we may assume that µ1 and µ2 label a set of
variables each, rather than a single one. In principle the
function f(.) gives the correlation amongst the four (sets
of) variables. But simplifies a lot the model to assume that
the variables, or sets of variables, µ1 and µ2 are uncorre-
lated amongst themselves (this is a consequence of local-
ity) and uncorrelated with the polarization angles (this is
an assumption of simplicity), so that the functions f(λ)
and Qj(λ, φj) may be written

f(λ) ≡ ρ(χ1, χ2)g1(µ1)g2(µ2),

Qj(λ, φj) ≡ Qj(χj , µj , φj), (4)

where ρ and gj are positive and normalized. When equa-
tions (4) are inserted in (2) and the integrals in µj per-
formed we get

pj(φj) =
∫
ρ(χ1, χ2)Pj(χj , φj)dχ1dχ2,

p12(φ1, φ2) =
∫
ρ(χ1, χ2)P1(χ1, φ1)P2(χ2, φ2)dχ1dχ2,

(5)

where

Pj(χj , φj) =
∫
gj(µj)Qj(χj , µj, φj)dµj . (6)

Thus our model requires defining only the functions ρ and
Pj , which fulfil conditions of positivity and normalization
similar to those of f and Qj, respectively, in equations (3).

In order to derive testable inequalities from our LHV
model we shall consider firstly experiments where quan-
tum mechanics predicts rotational symmetry (in the re-
stricted sense of invariance under rotations around an
axis, see below). It is known that full rotational invariance
is an additional constraint on local realism which, if ful-
filled, allows deriving inequalities more stringent than the
original Bell inequalities [8]. Actually quantum mechanics
does not predict rotational invariance in the current two-
photon experiments, because the entangled photon pairs
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are produced via parametric down conversion where the
optical axes of the nonlinear crystal introduce a privileged
spatial orientation. In particular the predicted coincidence
detection probability does not only depend on the differ-
ence φ1 − φ2 but it has also a (weak) dependence on the
sum φ1 + φ2. (The quantum states of the photon pairs
in early experiments, involving atomic cascades, did pos-
sess rotational invariance, but they lacked good angular
correlation which is a great difficulty for the discrimina-
tion between local realism and quantum mechanics [9].)
In Section 4 below I shall study cases where rotational
symmetry does not hold true, but firstly I will consider a
symmetric model.

I shall obtain a LHV model having rotational symme-
try, with respect to polarization, by using the following
particular form of equations (5)

p12(φ) =
∫
ρ(χ1 − χ2)P (χ1 − φ1)P (χ2 − φ2)dχ1dχ2,

(7)

pj =
∫
ρ(χ1 − χ2)P (χj − φj)dχ1dχ2, j = 1, 2 (8)

where I have also assumed symmetry amongst the
polarizer-detector systems so that P1 = P2 (models with-
out this restriction will be discussed later on). Here and
below all functions are periodic with period π and the inte-
grals go from −π/2 to π/2. In addition the functions ρ and
P possess the following properties of positivity, symmetry
and normalization (ρ is normalized so that p12(φ) = 1 if
P = 1 in (7))

ρ(x) = ρ(−x) ≥ 0,∫
ρ(x)dx = 1/π, 0 ≤ P (x) = P (−x) ≤ 1. (9)

I shall add the following two conditions which are plausible
on physical grounds

dρ(x)
d|x| ≤ 0,

dP (x)
d|x| ≤ 0. (10)

The first inequality means that the pairs where χ1 = χ2

are most likely produced in the source (this equalitity may
correspond to parallel or perpendicular polarization, de-
pending on the actual experiment). The second inequality
means that the detection is most probable when the in-
coming photon has the polarization close to the plane of
the analyzer. Equations (7) to (10) define our “natural”
family of LHV models.

For later convenience I make the change of variables

χ1 − φ1 = u, χ2 − φ2 = v, φ1 − φ2 = φ, (11)

which leads to

p12(φ) =
∫
ρ(u− v + φ)P (u)P (v)dudv. (12)

Hence we get the following results
∫
p12(φ)dφ = p1p2, p1 = p2 = C0/π,

∫
p12(φ) cos 2φdφ ≡ C2

1/π, (13)

where the constants Ck are defined by

Ck ≡
∫
P (x) cos(2kx)dx. (14)

It is also convenient to introduce the new function

f(y) = f(−y) =
∫
P

(
x+

y

2

)
P

(
x− y

2

)
dx (15)

whence we get

p12(φ) =
∫
ρ(y + φ)f(y)dy =

∫
ρ(y)f(y − φ)dy, (16)

the latter equality following from the periodicity of the
functions involved.

3 Comparison with the quantum predictions

Now I will investigate whether the quantum predictions
are compatible with the family of LHV models above de-
fined. Quantum mechanics predicts, for experiments with
rotational symmetry and all detectors having the same
efficiency, η,

pQ
j =

1
2
η, pQ

12(φ) =
1
4
η2(1 + V cos 2φ). (17)

Our family of models (7) agrees with the quantum-
mechanical prediction for the single probabilities, pj, pro-
vided we choose

C0 =
∫
P (x)dx =

πη

2
. (18)

Then I will search for the best LHV model of the form (7),
defining “best” by the condition that, for fixed η and V ,
the prediction for the coincidence probability is as close as
possible to the quantum prediction. That is the quantity
S must be a minimum, where

S ≡
∫
dφ

[
p12(φ) − 1

4
η2(1 + V cos 2φ)

]2

, (19)

with p12(φ) given by (16) and (15) and the functions ρ(x)
and P (x) fulfilling the conditions (9). For the solution of
the problem I shall proceed in two steps. Firstly, for a
given P (x) fulfilling (18), I search for the best positive
and normalized function ρ(x). In the second step I shall
look for the best P (x).

In the first step fixing P (x) amounts at fixing the func-
tion f(y) (see Eq. (15)). For the solution of the variational
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problem, equation (19), the positivity of ρ is insured writ-
ing

ρ(x) = ψ(x)2, ψ ∈ R,

and the normalization constraint may be taken into ac-
count by means of a Lagrange parameter λ. Thus the
problem becomes

δ

{
S[ψ(x)2] + λ

∫
ψ(x)2dx

}
= 0.

Hence we get, after some algebra, that either ψ(x) = 0 or
∫
ψ(x)2dx

∫
dφf(x − φ)f(y − φ) =

λ+
1
4
η2

∫
dφf(y − φ)[1 + V cos 2φ]. (20)

For the solution of this integral equation the properties of
ρ(x), see (7), suggest the Fourier expansion

ψ(x)2 =
∞∑

k=0

Ak cos(2kx), (21)

which, inserted in equation (20) leads to (see Eq. (14))

∞∑
k=0

AkC
2
k cos(2ky) = λ+

1
4
η2[C2

0 + V C2
1 cos(2y)]. (22)

Here I have used the following relation, easily derivable
from the properties of the function f(x) (see Eq. (15)),

∫
f(u− v) cos(2ku)du = C2

k cos(2kv).

Equation (22) holds true for any y if

A0 =
4λ+ η2C2

0

4C4
0

, A1 =
η2V

4C2
1

, Ak = 0 for k ≥ 2.

(23)
Thus the function ρ(x) will be

ρ(x) =
4λ+ η2C2

0

4C4
0

[
1 +

η2C4
0V

C2
1 (4λ+ η2C2

0 )
cos 2x

]
+

, (24)

where [.]+ means putting 0 if the quantity inside the paren-
thesis is negative and λ should be calculated from the
normalization condition (see Eq. (9)). There are two cases
which must be analyzed separately.

The first case corresponds to the function P (x)
fulfilling

C1

C0
=

∫
P (x) cos 2xdx∫

P (x) dx
≥

√
V . (25)

Then we may take λ = 0 leading to

ρ(x) =
1
π2

[
1 +

C2
0

C2
1

V cos 2x
]

=
1
π2

[
1 +

π2η2

4C2
1

V cos 2x
]
, (26)

where the choice of C0, equation (18), has been taken into
account. This gives perfect agreement with the quantum
predictions, (17), for both single and coincidence proba-
bilities.

It is interesting to know the range of values of η and
V where it is possible the agreement between the model
and quantum predictions. Actually the constraints (9)
and (18) put an upper bound to the left hand side of the
inequality (25). It is not difficult to realize that the best
function P (x), that is the one saturating the bound, is

P (x) = 1 if |x| ≤ πη/4, 0 otherwise. (27)

This choice leads to

C1 = sin(πη/2),

whence (25) becomes

V ≤ Vmax =
sin2(πη/2)
(πη/2)2

� 1 − π2η2

12
, (28)

the latter approximation being valid for η � 1. We stress
that, if this inequality is fulfilled, there are LHV models
of the type (7) giving complete agreement with quantum
mechanics. In fact, the choice equation (26) for ρ(x) and
equation (27) for P (x) gives the desired result.

We pass to analyze the second of the two cases in
equation (24) which, by the arguments of the previous
paragraph, will correspond to the violation of the inequal-
ity (28). In this case the function ρ(z) may be written,
correctly normalized according to equation (9),

ρ(z) =
1
π

[π + tan(2ε) − 2ε]−1

(
1 +

cos 2z
cos 2ε

)
+

,

ε ∈
(
0,
π

4

)
(29)

and I will search for the departures between the model
and quantum-mechanical predictions using that function.
For the single detection probability, pj, there is no de-
parture, that is the predictions exactly agree, provided
we make the choice (18). However there is disagreement
for the coincidence probability, which may be most conve-
niently exhibited expanding (29) in a Fourier series of the
form

ρ(z) =
1
π2

∞∑
n=0

an cos(2nz). (30)

We get a0 = 1, as it should ρ(z) being normalized in the
sense of (9), and

a1 = [π + tan(2ε) − 2ε]−1

[
π − 2ε
cos(2ε)

+ sin(2ε)
]

= 1 + 2ε2 − 8ε3

π
+O(ε4),

an =
2

n(n2 − 1)
(−1)n sin(2nε) − n tan(2ε) cos(2nε)

π + tan(2ε) − 2ε

= (−1)n 16
3π
ε3 +O(ε5) for n ≥ 2. (31)
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Hence it is straightforward to get the model predictions
for p12 from (12 and (27), that is

p12(φ) =
1
4
η2

[
1 +

∞∑
n=1

an
C2

n

(πη/2)2
cos(2nφ)

]
, (32)

where Cn was defined in equation (14).
Our aim is the find the best local model, in the sense of

S (19) being a minimum for given η with P (x) and ρ(z)
fulfilling, respectively, equations (18) and (29). It is not
difficult to realize that the minimum S will correspond to
p12(φ) being of the form

p12(φ) =
1
4
η2[1 + V cos(2φ) + δ(φ)], (33)

with δ(φ) containing only terms with n ≥ 2 in the Fourier
expansion (32). For any choice of P (x) this will be the
case if the following relation between ε, η, V and C1 holds
true

V =
C2

1

(πη/2)2
a1. (34)

Now we shall choose P (x) so that |δ(φ)| is as small as
possible. From equations (31) we see that this requires
that ε is small which, as a1 increases with ε, implies that
C1 must be high (see Eq. (34)). Hence the best choice for
P (x) will correspond to the maximum possible value of C1

compatible with equation (18), which happens if P (x) is
chosen as in equation (27). After that the value of ε may
be obtained from equation (34) giving, to order O(ε2),

V = (1 + 2ε2)
sin2(πη/2)
(πη/2)2

+O(ε3)

=⇒ ε �
√

1
2

(
V − sin2(πη/2)

(πη/2)2

)
+

, (35)

an equality clearly showing that ε is a measure of the
violation of the inequality (28) (ε = 0 if the inequality
holds true).

With the said choices of P (x) and ρ(x) the departure
of the model from the quantum predictions is given by

δ(φ) =
∞∑

n=2

an
sin2(nπη/2)
(nπη/2)2

cos(2nφ). (36)

Inserting here the expressions for an, equation (31), it is
straightforward, although lengthy, to get the expression of
δ(φ). However the parameter ε will be very small in prac-
tice (i.e. ε� π/4), which allows working to lowest order in
ε, that is O(ε3) (see (31)). Although that approximation
of an is good only for the terms with small n, the terms
with high n contribute but slightly. We may get the ex-
plicit form of δ(φ) to order O(ε3) from equation (36) with
an given by equation (31). We shall use the summation
formula

∞∑
n=1

(−1)n

n2
cos(nx) =

x2

4
− π2

12
, x ∈ [−π, π],

but we must substitute (−1)n cos(n(x − π)) for cos(nx)
whenever x > π (but x ≤ 2π) and a similar change if
x < −π. In this case the summation formula needed is

∞∑
n=1

1
n2

cos(nx) =
(x− π)2

4
− π2

12
, x ∈ [0, 2π].

Thus the term δ(φ) is given up to order O(ε3) by

δ(φ) =
8ε3

3π

[
2
sin2(πη/2)
(πη/2)2

cos(2φ) − 1

+
2
η2

[
η +

2
π
|φ| − 1

]
Θ(|φ| − π

2
(1 − η))

]
, (37)

where Θ(x) is the Heavside function, fulfilling Θ(x) = 1
if x > 0, Θ(x) = 0 if x < 0. (Of course we shall take
δ(φ) = 0 if Eq. (28) holds true.)

4 Testable inequalities for the family of local
models

A parameter giving a quantitative measure of the discrep-
ancy between quantum mechanics and the best model of
the family defined by equations (7) and (8) is, from equa-
tion (36),

∆2 = 〈δ(φ)2〉 ≡ 1
π

∫
δ(φ)2dφ

=
1
2

∞∑
n=2

a2
n

sin4(nπη/2)
(nπη/2)4

. (38)

The summation in n would be straightforward but lengthy
and, as all terms in the sum are positive, a lower bound
is provided by the first few terms. With just one term we
get

∆ ≥
√

2 sin3(2ε)
3[(π − 2ε) cos 2ε+ sin 2ε]

sin2(πη)
π2η2

� 8
√

2
3π

sin2(πη)
π2η2

ε3. (39)

Actually it is easy to calculate ∆ to order O(ε3) either
performing the sum involved in equation (38) or directly
integrating the square of the expression (37). I get

∆ =
4
3π

√
2
3η

− 1
2
− sin4(πη/2)

(πη/2)4

(
V − sin2(πη/2)

(πη/2)2

)3/2

+

≡ D(η), (40)

where I have taken ε from equation (35) (as before (.)+
means putting zero if the quantity inside the bracket
is negative). The quantity D(η) gives the deviation, as
defined in equation (37), between the best local model
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and quantum mechanics. Thus in any experiment whose
results are compatible with the family of local models
defined by equations (7) and (8), the deviation will be
greater than D(η). That deviation ∆exp may be obtained
from the measurement of the coincidence detection rates,
R12(φ), at different angles, taking δ(φ) to be the difference
of that quantity appropriately normalized minus the best
cosinus fit of p12(φ). Thus we get

∆exp =

〈[
R12(φ)
〈R12(φ)〉 − 1 − V cos 2φ

]2
〉1/2

≥ D(η), (41)

whilst quantum mechanics predicts ∆exp = 0. This in-
equality has the virtue that it may be tested even at rel-
atively low detection efficiencies (provided that V is close
enough to unity as is usual), so removing the biggest ob-
stacle in the standard tests of Bell’s inequalities. It re-
places the previously proposed inequality (14) of refer-
ence [6], which is stronger but valid only for a family of
LHV theories more restricted than (7).

From the practical point of view the inequality (41)
requires the measurement of the coincidence detection rate
at different values of the angle, φ, between the polarizers.
I may consider n angles defined by

φj =
j

n
π, j = 1, 2...n,

and approximate the integral in the left hand side of (41)
by a sum, so leading to the inequality

∆exp =

⎧⎨
⎩

1
n

n∑
j=1

[
R12(φj)
〈R12〉 − 1 − V cos 2φj

]2
⎫⎬
⎭

1/2

≥ D(η),

(42)
where

〈R12〉 ≡ 1
n

n∑
j=1

R12(φj).

The quantity V should be taken from the quantum pre-
diction for the actual experiment, but the inequality holds
true for any value of V provided we use that same V in
the calculation of D(η), equation (41). It is interesting to
use the value of V giving the minimum value to ∆exp for
the given empirical rates {R12(φj)}, that is

V = 2

∑n
j=1 R12(φj) cos 2φj∑n

j=1 R12(φj)
, (43)

where I have taken into account the equalities
n∑

j=1

cos 2φj = 0,
n∑

j=1

cos2 2φj =
n

2
.

In this case I get

∆min =

{
n

∑n
j=1 R

2
12(φj) − 2(

∑n
j=1 R12(φj) cos 2φj)2

(
∑n

j=1 R12(φj))2
− 1

}1/2

≥ D(η), (44)

this inequality making possible empirical tests of the fam-
ily of local models defined by equations (7) and (8) with-
out any reference to quantum mechanics, whilst equa-
tion (42) allows tests of the local models versus quantum
mechanics.

The test of the inequalities involve the measurement of
n/2+1 rates if n is even or (n+1)/2 rates if n is odd, once
we take into account the symmetry R12(φj) = R12(π −
φj). For even n ≥ 4, equation (44) may be related to the
Fourier expansion equation (38) using the interpolation
formula

R12(φj)
〈R12〉 = 1 +

n/2∑
k=1

bk cos(2kφj), (45)

whence the left hand side of (44) may be interpreted as

∆min =

⎧⎨
⎩

1
2

n/2−1∑
k=2

b2k + b2n/2

⎫⎬
⎭

1/2

. (46)

The most simple non-trivial case corresponds to n = 4,
that is the choice of the angles 0, π/4 and π/2. In this
case equations (41) and (44) lead to the inequality

∆min =
R12(0) +R12(π

2 ) − 2R12(π
4 )

R12(0) +R12(π
2 ) + 2R12(π

4 )
� D(η). (47)

Strictly speaking, from equation (44) we may only con-
clude that the modulus of the left hand side fulfils the
inequality, but we may take that side as positive because
a2 > 0 in the expansion (30). At a difference with (41) the
inequality (47) is not rigorous due to the approximation
made in going from equation (41) to (42), the possible
error being greater as the number of measured rates is
smaller.

In addition to the inequalities it is possible to derive
some predictions of the proposed local models for measur-
able quantities. For instance, defining

VA ≡ R12(0) −R12(π
2 )

R12(0) +R12(π
2 )
,

VB ≡
√

2
R12(π

8 ) −R12(3π
8 )

R12(π
8 ) +R12(3π

8 )
, (48)

their difference may be estimated. The former quantity is
called the visibility (or contrast) of the polarization corre-
lation curve and the latter is the quantity measured in the
standard tests of Bell’s inequalities. According to quantum
mechanics both quantities should be equal to the parame-
ter V , (17), but in our model there is a difference. In fact,
from equation (45) it follows that

VA =
b1 + b3

1 + b2 + b4
� b1 + b3 − b2 − b4,

VB =
b1 − b3
1 − b4

� b1 − b3 + b4,
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where I have taken into account that, from a comparison
of the empirical quantities bk with the model quantities of
equations (36) and (35), we get

b4 � |b3| � b2 � 1 � b1 ≡ V.

Hence the family of LHV models here studied predicts (see
Eqs. (31) and (35))

VB − VA � b2 − 2b3 + 2b4

� 20
√

2
3π

K

(
V − sin2(πη/2)

(πη/2)2

)3/2

+

, (49)

K being a number of order unity. In some experiments it is
reported, instead of VA, the value of V , which is obtained
from a fit to the empirical coincidence rates R12(φj). In
this case the model predicts

VB − V � −b3 � 4
√

2
3π

K

(
V − sin2(πη/2)

(πη/2)2

)3/2

+

. (50)

I stress that these estimates are correct only for the “best”
local model of the family. Thus their value is only indica-
tive of the order of magnitude to be expected in actual
experiments if they are compatible with the said family of
local models.

In recent optical tests of Bell’s inequalities people use
two-channel polarizers and four coincidence rates are mea-
sured, p++(φ), p+−(φ), p−+(φ), p−−(φ). Typically there
is symmetry between the two channels, at least approxi-
mate. In this case our model may be extended to these
experiments using two functions P+(φ) and P−(φ) =
P+(φ+π/2) instead of only one, P (φ), as in equation (7).
Assuming the form (27) for P+(φ) we get the prediction

R+−(φ+ π/2) = R−+(φ+ π/2)
= R++(φ) = R−−(φ), (51)

the latter given by equation (33) (putting ε = 0 if the
inequality (28) holds true). The quantity reported in the
experiments is the correlation, defined by

E(φ) =
R++(φ) +R−−(φ) −R+−(φ) −R−+(φ)
R++(φ) +R−−(φ) +R+−(φ) +R−+(φ)

, (52)

for which our model predicts

E(φ) = V cos(2φ) − δ(π/2 + φ), (53)

where δ(φ) is given by equation (37). The parameter most
accurately measured in the experiments is

S = |3E(π/8) − E(3π/8)| ≡ 2
√

2VB, (54)

which is predicted to have the value 2
√

2 according to
quantum mechanics in ideal experiments with 100% de-
tection efficiency, but S should be less than 2 for any LHV
model fulfilling the “fair sampling hypothesis” (see Intro-
duction section).

From equation (48) it is easy to see that, in our LHV
family of models, the quantities VB and VA defined in (48)
correspond, respectively, to 2

√
2 times the quantity S of

equation (52) and to

VA =
1
2
(E(0) − E(π/2)). (55)

This allows testing the model prediction equation (49) in
experiments involving two-channel polarizers from mea-
surements of the correlation E(φ), equation (52), at the
four angles 0, π/8, 3π/8 and π/2. Also the prediction equa-
tion (50) may be tested getting VB from (54) and V from
a fit of E(φ) as shown in equation (53).

5 From ideal to real experiments

In previous sections, I have analyzed rather idealized ex-
periments. In actual polarization correlation experiments
involving parametric down converted photons the results
obtained are not so simple as assumed in equations (1)
and (17). Indeed it is frequent that the coincidence de-
tection rate is not rotationally invariant in the sense that
R12(φ1, φ2) does depends on the angles φ1 and φ2 sepa-
rately rather than on the difference φ = φ1 − φ2 only. In
addition, the single rates may depend on the positions of
the polarizers, that is Rj = Rj(φj), and the efficiencies,
η1 and η2, of the detectors may not be the same. Finally
not all photons may arrive in pairs at the detectors (either
because there is some single photon production or because
a fraction of the photons do not enter the apertures.) The
relevance of these nonidealities will be analyzed in present
section.

The quantities which may be measured in typical ex-
periments involving single channel polarizers are: two sin-
gle rates, R1 and R2, the rate R12 of counts in the sec-
ond detector conditional to counts in the first detector
(within an appropriate time window) and the quantum
efficiencies of the detectors (these measured in auxiliary
experiments). In order to apply the analysis of Bell [1] to
the experiments we should define single and coincidence
probabilities. But for the test of the family of LHV theo-
ries studied in this paper (defined by Eqs. (7) and (8)) we
do not need the single probabilities and the single rates,
Rj , are not used. In order to obtain the coincidence prob-
ability, p12, I introduce the rate, R0, of pair production in
the source, whence I may get the p12 using Bayes rule of
probability theory as follows

p12 = p1 × p2/1 =
R1

R0
× R12

R1
=
R12

R0
. (56)

The adequacy of this definition of p12 requires that all
photons leaving the source are produced in pairs, with
no more than one pair within each time-window. That is,
equation (56) amounts at neglecting single photon pro-
duction, dark counts and the possible production of sev-
eral photon pairs within one time-window. I shall assume
that all these difficulties are avoided by a subtraction of
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“accidental coincidences”, which is a standard practice in
polarization correlation experiments. (I stress that this is
so because we are attempting to test a restricted family
of LHV models, given by Eqs. (5), but would not be valid
if we attempted to refute the whole family of LHV theo-
ries [2].) Actually the pair production rate R0 cannot be
measured in the experiments but this is not a real diffi-
culty. Indeed the inequalities fulfilled by the LHV family
of models proposed in this paper involve only the depen-
dence of the coincidence probability on the positions of the
polarizers, determined by the angles φ1 and φ2. In the ex-
periments this dependence is usually studied by measure-
ments with a polarizer at a fixed position, say φ2 fixed, an
the other polarizer’s position varied. Typically the mea-
surements are made at two different positions of the sec-
ond polarizer, say φ2 = 0 and φ2 = π/8. An appropriate
interpolation leads to the following parametrization

p12 ∝ R12 ∝ 1 + [Vm + (VM − Vm) cos 4φ2] cos 2φ, (57)

where VM (Vm) is the maximum (minimum) visibility of
the detection coincidence curve when the angle φ2 is
varied.

A local hidden-variables model able to reproduce equa-
tion (57) for not too high detection efficiencies is given by
the functions ρ and Pj (see Eq. (5))

ρ(χ1, χ2) =
1
π2

{1+[Wm+(WM−Wm) cos 4χ2] cos 2χ},

Pj(χj , φj) = βjΘ

(
πηj

4βj
− |χj − φj |

)
, j = 1, 2, (58)

with any βj ∈ [ηj , 1] and appropriate choices for WM and
Wm ≤ WM . Here χ = χ1 − χ2 and Θ(.) is the Heavside
function Θ(x) = 1 if x ≥ 0, zero otherwise. η1(η2) is as-
sumed to be the efficiency of all detectors of the first, say
Alice’s (second, say Bob’s) photons. If the detection effi-
ciencies are high enough and the value of VM in (57) is
close enough to unity, then it is not possible to reproduce
the quantum predictions. In fact, the conditions (9) imply
WM ≤ 1 (in addition to βj ≤ 1) which give after some
algebra the constraint

VM ≤ 1
3
(VM + Vm)(s21 + s22) +

4
π2

s1s2
η1η2

[
1 − 2

3
(s21 + s22)

]
,

sj ≡ sin
(πηj

2

)
. (59)

If ηj � 1 and both VM and Vm are close to unity,
as is usually the case in typical experiments (where
Vm � 0.96, ηj � 0.3), the inequality becomes (compare
with (28))

VM � 1 − π2

24
(η2

1 + η2
2). (60)

The question whether the quantities ηj refer here to
the quantum efficiencies of the photon detectors (photo-
diodes) or to the overall detection efficiency (which may
be substantially smaller than ηj due to several losses) is
discussed in next section. Agreement between the model
and quantum predictions is possible only if equation (59)

(or Eq. (60)) is fulfilled. If this is not the case, the model
predicts inequalities which are violated by quantum me-
chanics. In the following I study this case, which allows
empirical discrimination of the family of local models here
proposed versus quantum mechanics.

From the results of Section 3 we see that the best
choice for the functions Pj is provided by equation (27)
(or, what is the same, Eq. (58) with βj = 1). “Best” is de-
fined in the sense that the disagreement with the quantum
prediction is a minimum, the disagreement being mea-
sured by an appropriate generalization of equation (19).
In order to get the best function ρ we may assume that
the empirical results to be compared with the LHV model
prediction are obtained with a fixed φ2 (see Eq. (57)). In
this case all inequalities of Section 4 are valid with the ef-
fective visibility, Veff , of the correlation curve substituted
for V , where we define

Veff ≡ [Vm + (VM − Vm) cos 4φ2].

It is easy to see that the stringent inequalities are ob-
tained when Veff ≡ VM , corresponding to φ2 = 0. Thus
the inequalities derived in previous section apply, with VM

substituted for V , including the extension to experiments
using two-channel polarizers and four detectors (a trivial
change is required if the efficiencies of the detectors are
not the same).

6 Discussion

Empirical tests of the models defined by equations (7)
to (10) are possible by means of the inequalities (28)
and (42), any experiment where one of these inequalities
holds true being compatible with a local hidden variables
model of the family. A relevant question is the choice of the
efficiency, η, which should enter in these inequalities. For
the family of LHV models defined by equations (7) to (10),
a comparison with the quantum prediction equation (17)
shows that η corresponds to twice the ratio between the
coincidence rate averaged over angles and the single rate,
that is

η1 = 2
〈R12(φ)〉
R2

, η2 = 2
〈R12(φ)〉
R1

(61)

where equation (1) is used and I have made a trivial gen-
eralization allowing for the case R1 �= R2. This definition
of ηj corresponds to the overall detection efficiency, which
takes into account all kinds of losses in lenses, filters and
polarizers as well as the fact that the angular correlation,
although good in parametric down converted photon pairs,
is not perfect. The value of ηj so defined is substantially
smaller than the quantum efficiency of the corresponding
detector. With this choice of ηj the violation of the in-
equalities (59) or (60) would be difficult in actual experi-
ments, thus preventing the discrimination of the family of
LHV models against quantum mechanics. For this reason
I propose to restrict the family of LHV models by adding,
to equations (7) to (10), the auxiliary assumption that
all losses above mentioned may be taken into account by
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some constants Kj < 0, the same for single and coinci-
dence rates, which represent the fraction of the photons
produced in the source that arrive at the detectors, that
is assuming the following

Rj =
1
2
R0Kjηj , 〈R12(φ)〉 =

1
4
R0K1K2η1η2, (62)

where now η1 and η2 are the quantum efficiencies of the
two photon detectors (if there are four, as is usual, we as-
sume that the two detectors on each side have the same
efficiency; if this were not the case we should use an appro-
priate average). Equations (62) represent a kind of “fair
sampling” applied only to lenses, filters and polarizers
(but not to the detectors). In my opinion this restricted
fair sampling assumption is far more plausible than the
standard one, which I strongly criticized in Introduction
section. In order to construct a LHV model consistent with
equations (62) we should replace equations (7) and (8) by

p12(φ) = K1K2

∫
ρ(χ1 − χ2)P1(χ1 − φ1)

× P2(χ2 − φ2) dχ1dχ2, (63)

pj(φ) = Kj

∫
ρ(χ1 − χ2)Pj(χ1 − φ1)dχ1dχ2. (64)

All results of the present paper will remain valid, in partic-
ular the inequalities (28) and (42), except that now ηj will
be the efficiencies of the photon detectors rather than the
overall detection efficiencies, including all kinds of losses.

With the choice of ηj proposed in the previous para-
graph the tests of the proposed inequalities are not
difficult because visibilities about 97% and detection
efficiencies of the order of 20% would be enough and
these conditions have already been achieved in performed
experiments. For instance the experiment by Kurtsiefer
et al. [10] reports VM = 0.982 ± 0.001 and Vm = 0.970 ±
0.001 after an appropriate subtraction of accidentals. Any
of these values, combined with the efficiency η = 0.214,
leads to a violation of the inequality (28), thus making
the test possible using the inequalities (42) or (47). The
quantities reported in the published paper do not allow
the test but the experiment clearly shows that the empiri-
cal tests may be easily performed with present technology.

The discrimination between the family of local models
and quantum mechanics is substantially more difficult
than just to test the models. In fact, calculating the
predictions of quantum mechanics in actual (non-ideal)
experiments is far from trivial. For instance, in the ideal
case the quantum prediction is given by equation (17) with
both the detection efficiency and the visibility of the co-
incidence curve equal to unity, i.e. V = η = 1. With these
values both inequalities (28) and (42 are violated, which
excludes all local models of the family here studied. This

agrees with the well-known fact that no local hidden vari-
ables model is compatible with quantum mechanics for
all (ideal) experiments. Nevertheless the non-perfect be-
haviour of detectors lowers their efficiency, η, making the
results compatible with local models in all experiments
performed till now, a fact which should be well-known
(but is not so [2]).

In summary, the family of local models studied in this
paper may be empirically refuted with a moderate value
of the detection efficiency, η, combined with a relatively
high value of the visibility, V , provided that there is ro-
tational symmetry, as assumed in Section 3. However in
the fashionable parametric down conversion experiments
rotational symmetry does not hold true, which makes eas-
ier the construction of local models compatible with the
experiments. In particular it is not obvious that quantum
mechanics, with all non-idealities taken into account, pre-
dicts a detection counting rate of the form (57). If this is
not the case the fulfillment of the inequalities (42) or (47)
would not imply a violation of quantum predictions. That
is the non-ideal behaviour of any actual experiment in-
creases substantially the range of parameters where quan-
tum mechanics is compatible with local hidden variables
theories, thus making the empirical discrimination rather
difficult. It may even be the case that no actual, i.e. non-
ideal, experiment allows discriminating local hidden vari-
ables versus quantum mechanics.

I thank Marco Genovese for useful comments and an anony-
mous referee for several suggestion which improved the clarity
of the paper.
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